Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
RNA Biol ; 19(1): 386-410, 2022.
Article in English | MEDLINE | ID: covidwho-1766976

ABSTRACT

Messenger RNA (mRNA) vaccines have been studied for decades, but only recently, during the COVID-19 pandemic, has the technology garnered noteworthy attention. In contrast to traditional vaccines, mRNA vaccines elicit a more balanced immune response, triggering both humoral and cellular components of the adaptive immune system. However, some inherent hurdles associated with stability, immunogenicity, in vivo delivery, along with the novelty of the technology, have generated scepticism in the adoption of mRNA vaccines. Recent developments have pushed to bypass these issues and the approval of mRNA-based vaccines to combat COVID-19 has further highlighted the feasibility, safety, efficacy, and rapid development potential of this platform, thereby pushing it to the forefront of emerging therapeutics. This review aims to demystify mRNA vaccines, delineating the evolution of the technology which has emerged as a timely solution to COVID-19 and exploring the immense potential it offers as a prophylactic option for other cryptic diseases.


Subject(s)
COVID-19 , Pandemics , COVID-19/prevention & control , Humans , Pandemics/prevention & control , RNA, Messenger/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
2.
Viruses ; 14(3)2022 03 05.
Article in English | MEDLINE | ID: covidwho-1765948

ABSTRACT

The toxicity of mRNA-lipid nanoparticle (LNP) vaccines depends on the total mRNA-LNP dose. We established that the maximum tolerated dose of our trivalent mRNA-LNP genital herpes vaccine was 10 µg/immunization in mice. We then evaluated one of the mRNAs, gD2 mRNA-LNP, to determine how much of the 10 µg total dose to assign to this immunogen. We immunized mice with 0.3, 1.0, 3.0, or 10 µg of gD2 mRNA-LNP and measured serum IgG ELISA, neutralizing antibodies, and antibodies to six crucial gD2 epitopes involved in virus entry and spread. Antibodies to crucial gD2 epitopes peaked at 1 µg, while ELISA and neutralizing titers continued to increase at higher doses. The epitope results suggested no immunologic benefit above 1 µg of gD2 mRNA-LNP, while ELISA and neutralizing titers indicated higher doses may be useful. We challenged the gD2 mRNA-immunized mice intravaginally with HSV-2. The 1-µg dose provided total protection, confirming the epitope studies, and supported assigning less than one-third of the trivalent vaccine maximum dose of 10 µg to gD2 mRNA-LNP. Epitope mapping as performed in mice can also be accomplished in phase 1 human trials to help select the optimum dose of each immunogen in a multivalent vaccine.


Subject(s)
Herpes Genitalis , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/genetics , Liposomes , Mice , Nanoparticles , RNA, Messenger/genetics , Viral Envelope Proteins/genetics
3.
Mol Ther ; 30(5): 1850-1868, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1692785

ABSTRACT

Since the first successful application of messenger ribonucleic acid (mRNA) as a vaccine agent in a preclinical study nearly 30 years ago, numerous advances have been made in the field of mRNA therapeutic technologies. This research uncovered the unique favorable characteristics of mRNA vaccines, including their ability to give rise to non-toxic, potent immune responses and the potential to design and upscale them rapidly, making them excellent vaccine candidates during the coronavirus disease 2019 (COVID-19) pandemic. Indeed, the first two vaccines against COVID-19 to receive accelerated regulatory authorization were nucleoside-modified mRNA vaccines, which showed more than 90% protective efficacy against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alongside tolerable safety profiles in the pivotal phase III clinical trials. Real-world evidence following the deployment of global vaccination campaigns utilizing mRNA vaccines has bolstered clinical trial evidence and further illustrated that this technology can be used safely and effectively to combat COVID-19. This unprecedented success also emphasized the broader potential of this new drug class, not only for other infectious diseases, but also for other indications, such as cancer and inherited diseases. This review presents a brief history and the current status of development of four mRNA vaccine platforms, nucleoside-modified and unmodified mRNA, circular RNA, and self-amplifying RNA, as well as an overview of the recent progress and status of COVID-19 mRNA vaccines. We also discuss the current and anticipated challenges of these technologies, which may be important for future research endeavors and clinical applications.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Nucleosides , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
4.
Bio Protoc ; 11(19): e4184, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1486838

ABSTRACT

With the recent availability of the SARS-CoV-2 mRNA-based vaccines, public attention has been drawn to this new technology and how it may be applied to other indications. Temporal activation of key hepatic regenerative pathways can induce liver regeneration, overcoming the lack of donor organs for liver transplantation and ineffectiveness of alternative treatments. Recombinant protein therapies and genetic therapies that target these pathways require frequent and repeated injections or, when integrated into the genome, may lead to deleterious effects. In contrast, nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) are non-integrative and induce transient yet robust expression of proteins that could serve as an ideal therapeutic tool to treat specific liver diseases. For instance, our recent publication in Nature Communications used mRNA-LNP to express hepatic mitogens, hepatocyte growth factor, and epidermal growth factor to induce liver regeneration following both acute and chronic liver injuries. Initial testing with firefly luciferase mRNA-LNP transfection and in vivo imaging confirmed specific hepatotropic delivery. In this protocol, we describe in detail the necessary steps to deliver mRNA-LNP to the murine liver and, following intravenous injection of eGFP mRNA-LNP, verify transfection efficiency using flow cytometry and liver cell specificity using immunofluorescence analyses. This procedure presents an unprecedented tool that can be customized with mRNA-LNP encoding any protein of interest to be expressed by virtually all hepatocytes, ~70% endothelial cells, and ~40% Kupffer cells for promoting liver function and/or regeneration. Graphic abstract: Experimental Design of mRNA-LNP IV Injection and Analysis of Liver Cell Specificity and Efficiency of Transfection (Created with BioRender.com).

5.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-710374

ABSTRACT

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , RNA, Viral/immunology , Viral Vaccines/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Furin/genetics , Furin/immunology , Humans , Immunity, Humoral/drug effects , Immunization/methods , Immunogenicity, Vaccine , Immunologic Memory/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL